Multispectral Deep Neural Networks for Pedestrian Detection
نویسندگان
چکیده
Multispectral pedestrian detection is essential for around-the-clock applications, e.g., surveillance and autonomous driving. We deeply analyze Faster R-CNN for multispectral pedestrian detection task and then model it into a convolutional network (ConvNet) fusion problem. Further, we discover that ConvNet-based pedestrian detectors trained by color or thermal images separately provide complementary information in discriminating human instances. Thus there is a large potential to improve pedestrian detection by using color and thermal images in DNNs simultaneously. We carefully design four ConvNet fusion architectures that integrate two-branch ConvNets on different DNNs stages, all of which yield better performance compared with the baseline detector. Our experimental results on KAIST pedestrian benchmark show that the Halfway Fusion model that performs fusion on the middle-level convolutional features outperforms the baseline method by 11% and yields a missing rate 3.5% lower than the other proposed architectures.
منابع مشابه
Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection
Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detect...
متن کاملMultispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks
Robust vision-based pedestrian detection is a crucial feature of future autonomous systems. Thermal cameras provide an additional input channel that helps solving this task and deep convolutional networks are the currently leading approach for many pattern recognition problems, including object detection. In this paper, we explore the potential of deep models for multispectral pedestrian detect...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملIllumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection
Multispectral images of color-thermal pairs have shown more effective than a single color channel for pedestrian detection, especially under challenging illumination conditions. However, there is still a lack of studies on how to fuse the two modalities effectively. In this paper, we deeply compare six different convolutional network fusion architectures and analyse their adaptations, enabling ...
متن کاملDeep Convolutional Neural Networks for pedestrian detection
Pedestrian detection is a popular research topic due to its paramount importance for a number of applications, especially in the fields of automotive, surveillance and robotics. Despite the significant improvements, pedestrian detection is still an open challenge that calls for more and more accurate algorithms. In the last few years, deep learning and in particular convolutional neural network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.02644 شماره
صفحات -
تاریخ انتشار 2016